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Summary. The single reference coupled cluster (CC) approach to the many-elec- 
tron correlation problem is examined from the viewpoint of the method of 
moments (MM). This yields generally an inconsistent (overcomplete) set of 
equations for cluster amplitudes, which can be solved either in the least squares 
sense or by selective projection process restricting the number of equations to 
that of the unknowns. These resulting generalized M M - C C  equations always 
contain the standard CC equations as a special case. Since, in the M M - C C  
formalism, the Schr6dinger equation will be approximately satisfied on a sub- 
space spanned by non-canonical configurations, this procedure may be helpful in 
extending the standard single reference CC theory to quasi-degenerate situations. 
To examine the potential usefulness of this idea, we explore the linear version of 
the CC approach for systems with a quasi-degenerate reference, in which case the 
standard linear theory is plagued with singularities due to the intruder states. 
Implications of this analysis for the structure of the wavefunction are also briefly 
discussed. 

Key words: Coupled cluster approach - Method of moments approach - Many- 
electron correlation problem - Intruder states - Quasi-degeneracy 

1. Introduction 

This decade witnesses a remarkable development in coupled cluster (CC) meth- 
ods for an accurate and reliable determination of many-electron correlation 
effects in atoms and molecules (for recent overviews and developments, see, e.g., 
[1-6]). Although substantial headway is being made in the important area of 
formulating open-shell CC techniques (see, e.g., [4, 6, 7]), even more significant 
progress has been achieved in computational implementations of single reference 
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CC methods [4, 8-14]. The latter, together with an enormous increase in the 
power of today's computers, are shaping into a standard quantum chemical 
procedure capable of providing highly accurate molecular data for numerous 
medium sized systems of practical interest. However, the majority of these 
applications are only concerned with the energy of the systems involved, while 
relatively little attention is paid to the corresponding CC wavefunctions. 

The aim of this paper is to analyze the closed-shell CC formalism from the 
viewpoint of the method of moments (MM), (cf., e.g., [15]), as applied to the 
solutions of the electronic Schr6dinger equation [16-18]. This approach will 
enable us to shed new light on certain aspects of CC methods as well as to design 
modifications that avoid singular behavior of CC equations in quasi-degenerate 
situations, particularly singularities that plague the linear CC (L-CC) approach 
[19-21]. We shall also pay attention to the structure of the CC wavefunction and 
its uniqueness from the viewpoint of the MM. 

2. Essentials of the single reference CC approach 

From the time of pioneering work by Coster and Kiimmel [22] and Ci~ek [23], 
numerous derivations and discussions of the CC approach were put forward by 
various authors (for overview, see, e.g., [1-4]). We thus recall here only a few 
essential points that are relevant to our study. 

2.1. Exact solutions 

Let us consider the N-electron SchrSdinger equation: 

(H- -E)[TJ)  =0,  (1) 

where [7 ~} designates the exact (non-degenerate) eigenstate that is associated 
with the ground state eigenvalue E. Consider, next, a set of spin orbitals {~bi }, 
containing a subset that defines a single-determinantal reference wavefunction 
I~} that approximates 17J}. The spin orbitals occupied in I~} are labeled by 
a, b, c . . . . .  the unoccupied ones by r, s, t . . . . .  and the generic ones by 
i,j, k , . . . .  If the set {~bi } is complete and appropriate convergence conditions are 
satisfied (cf., e.g., [24]), 17 j } can be formally represented (using the intermediate 
normalization ( ~ [ 7  t )  = 1) in the CI form as 

I lff> = (1 + C)]~) ,  (2) 

with 
N 

C =  ~, C., (3) 
n = l  

where the n-body excitation operator C, is given, in the second quantized form, 
as follows 

with 

" ' ' r n  e r l r 2 " ' r n  (4) Cn = ( n!)-2 2 Crallr2a2"" "an a l a 2 "  " " a n '  

a 1 . . .  a n 
r I . . .  r n 

r , , 2  . . . . .  , * . . . x ~ 5 o  . . . x ~ x o  , (5) e a l a  2 • . a n ~ -  ~ r l ~ , ~ f r 2  
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Since for realistic N-electron systems the c-coefficients in the expansion (4) are 
not available, one resorts to a molecular orbital (MO) description and considers 
a component of I~/') in a finite dimensional N-electron space, built as an 
antisymmetrized tensor power of a (finite) spin orbital set {q~;}. Then all the 
summations in the expansion (4) are finite and the CI coefficients c can be 
determined (at least in principle) by applying Rayleigh-Ritz variational method. 
The resulting full CI (FCI) wavefunction, which we again designate by I g J) ,  
represents then an exact solution within the chosen finite dimensional model 
space, which is defined by a chosen spin orbital set {~b~ }. These "exact" solutions 
can serve as a useful benchmark for testing of various approximate theories 
within the same model space. For the purposes of the present analysis there is no 
need to differentiate between the exact (i.e., truly converged) and "exact" FCI 
wavefunctions. 

In the many-body perturbation theory (MBPT) [25] formalism, a nondegen- 
erate N-electron wavefunction IT) is given in each order of PT by the sum of all 
possible linked diagrams, including the exclusion principle violating (EPV) 
diagrams. It was first shown by Hubbard [26] that such a wavefunction can be 
uniquely expressed in terms of connected diagrams of the MBPT. Designating by 
T the operator that generates this set of connected diagrams, when acting on a 
chosen independent particle model reference state I q~), the exact wavefunction 
I~u) is then expressed as follows: 

IT)  = exp(T)[~).  (6) 

This expansion is nowadays referred to as a cluster expansion due to its 
similarity with an analogous expansion that is exploited in statistical mechanics 
(see, e.g., [27]). The operator T, Eq. (6), is correspondingly referred to as a 
cluster (expansion) operator. It consists of various n-particle components T,, 

N 

~ =  E r , ,  (7) 
n = I  

which in the second quantization formalism are defined through the correspond- 
ing cluster amplitudes t, 

T . = ( n ! )  -2 Z z"r2 r° • r. (8) a~a2'' a, e~1~2. • • a,. 
a 1 . . ,  a n 

r 1 • . .  r n 

These amplitudes are simply related with the corresponding c-amplitudes of the 
FCI expansion, namely [22, 23, 28]: 

C1 = T1, 

1 2 G = T 2 + ~ T ~ ,  

1 3 ( 9 )  
C3 = T3 + T~ T2 + g T1 ,  

C 4 = T ~  , 2 ~ ~ 1 4 +2T2+~T~Tz+ T1T3+~TI. 

These equations can always be solved for T,. Hence, the knowledge of the CI 
structure of the exact wavefunction uniquely determines its structure in terms of 
the exponential of the cluster operator, i.e., the CI form, Eq. (2), is equivalent to 
the CC form, Eq. (6). 
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2.2. Approximate solutions 

An application of either the CI or CC method to actual many-electron systems 
requires invariably an imposition of drastic restrictions on the order of excitation 
operators that are retained in Eqs. (3) or (7), respectively. Thus, generally, we 
assume that 

nCl 
~ ~ Cn, ( lOa)  

n=l 

and 

with 

nCC 
T ~  T =  ~ T., (lOb) 

nci < N and ncc < N. (10c) 

In the following we designate the truncated cluster operator by T. For the most 
often used CISD and CCSD approaches, we have nc~ = ncc = 2. 

The c-amplitudes of the limited CI approaches are obtained from the 
standard variational Rayleigh-Ritz procedure. The resulting secular equation 
for I~c~) and the approximate energy E¢~ may be written in the form: 

( ¢  I n - EcII ~]gCl) = 0 ,  ( l la)  

(r l ' ' ' rn  [a-Ecll~l.tcl~=O, (n = 1 , 2  . . . . .  ncl) ,  (11b) 
\ I [ / al an 

where the excited configurations are denoted as 

(12) 

and all the configurations appearing in the (7, operators of Eq. (10a) are 
accounted for. 

Formally, Eqs. ( l la )  and ( l ib)  can be obtained as projections of the 
SchrSdinger Eq. (1) onto the projection space spanned by the reference configura- 
tion ]~)  and by all the excited configurations appearing in the expansion of 
]Tci). Thus, the CI equations may be regarded as a special case of the MM 
method [15-18], or of its linear realization known as Galerkin-Petrov method 
[18, 29]. Using the terminology of this latter approach [18], the CI equations 
result when the coordinate space (used to approximate the eigenfunctions) and 
the projection space (onto which the Schr6dinger Eq. (1) is projected) are 
identical. 

In contrast to CI methods, the t-amplitudes of CC approaches (and the 
corresponding energy) cannot be easily obtained by exploiting a standard 
variational procedure. Indeed, exploitation of the CC ansatz, Eq. (6), in the 
variational functional leads to an infinite expansion involving arbitrarily high 
powers of t-amplitudes, even when truncated expansion is used for the cluster 
operator, Eq. (10b). Consequently, CC approaches are based on nonvariational 
l~rocedures. The explicit equations for the t-amplitudes were first derived by 
Ci~ek [23] using the MBPT diagrammatic techniques. However, it was subse- 
quently shown [30] that the same equations can be obtained when using standard 
configurational (first quantization) methods based on projecting the SchrSdinger 
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equation, i.e. by the MM procedures. Since that time the explicit projection-type 
derivation of the CC equations was often employed. Using this approach, one 
can employ either of the following two methods. The first one [30] projects the 
Schr6dinger equation 

(H - Ecc) [er~ ) = O (13) 

onto the 1~0) and the set of excited configurations. This set is always chosen to 
contain those configurations which are used to represent the operators T, 
appearing in Eq. (10b). The resulting equations can be written in the following 
implicit form: 

(~]H-Ecc]ercb) =0, (14a) 

(r' '"r' lH-Ecca, an e r ~ )  = 0, (n = 1, 2 , . . . , n c c ) .  (14b) 

For example, in the CCSD approach, where T =  T1 + T2 and ncc = 2, the 
equations corresponding to projections onto the singly- and doubly-excited 
configurations are accounted for. 

The second method takes advantage of a simple transformation proposed by 
Coester [22], which leads from the Schr6dinger equation for I~) ,  expressed in 
the CC form of Eq. (6), to the equation 

(e-rile r -  Ecc ) [q~) = 0. (15) 

This equation is projected onto [4) and the same set of excited configurations as 
in the previous case, obtaining now the following set of implicit equations: 

( ~ [e- rHer] q ~ ) = Ecc, (16a) 

( rlal a,r" e_rHer ] ~)=0, (n = 1,2 . . . .  ,ncc) (16b) 

or, equivalently, 

(q~ [(Her)cl~) = Ecc, (16a') 

(rla, . anr" (Her)c]~)=O, (n = 1,2 . . . . .  ncc), (16b') 

where the subscript C indicates the connected component of a given expression. 
The latter two equations are an immediate consequence of the identity [23] 

H]er4 )) = (Her)clerk) = er(Her)clCb). (13') 

In contrast to Eqs. (14b), Eqs. (16b) or (16b') are manifestly connected, thus 
immediately implying the size extensivity [28, 31] of an approximate CC ap- 
proach considered. It should be noted that the energy is now removed from Eqs. 
(16b) that determine t-amplitudes. Of course, Eqs. (14b) are also energy inde- 
pendent when their explicit form is worked out [30], since the disconnected 
component is exactly cancelled by the energy dependent term. Indeed, both Eqs. 
(14b) and (16b) represent equivalent sets of non-linear equations that determine 
the CC amplitudes and thus the energy. 

For the exact T operator (ncc = N) the proof of the equivalence of Eqs. 
(14a,b) and (16a,b) is straightforward (see, e.g., [32]). For approximate T 
operators (ncc < N), the equivalence can be proved by properly combining the 
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equations for different n values. An explicit proof of this equivalence was recently 
given for the CCSD method [33]. 

3. Method of moments aspects of the CC method 

In the preceding section we presented standard versions of CI and CC approaches 
as special cases of the method of moments. Although the projection technique that 
we used to obtain CI Eqs.(1 la,b) and CC Eqs. (14a,b) or (16a,b) is the same, 
there is nevertheless a clear distinction between these two cases when regarded 
from the MM viewpoint. Namely, in the variational CI approach, the projection 
space is uniquely defined by the form of 17%I ), i.e., this space is given by the span 
of all determinants (or corresponding spin-adapted configurations) that appear in 
IqJc~) (coordinate space of MM). This is a direct consequence of applying the 
variational principle to determine I Tc~ ). However, in nonvariational CC methods, 
there is no obvious a priori principle that fixes the projection space, leaving thus 
certain freedom to select this space arbitrarily (cf., however, [34]). This freedom 
was seldom discussed in the literature and all the applications exploit the same 
projection space as in the corresponding Ct procedure. The main argument to 
motivate this choice is of a practical nature, since it enables one to obtain a correct 
number of equations for the unknown t-amplitudes (see, e.g., [3, 33]). Another 
argument is based on the observation [30] that CC Eqs. (14b) may be derived from 
CI Eqs. (1 lb) by approximating c-amplitudes representing higher excitations by 
products of t-amplitudes associated with corresponding excitations of lower 
order. Perhaps the most convincing argument for the use of a standard projection 
space is the fact that the equations so obtained enable a straightforward 
interpretation of t-amplitudes in terms of the MBPT (see, e.g., [35]). We will not 
address this problem here but instead will discuss the structure of the CC 
equations for other than standard choices of the projection space. 

3.1. Alternative choices of  projection spaces 

From a purely mathematical viewpoint, there are many possibilities how to choose 
projection spaces that can be used to derive equations determining CC amplitudes. 
We shall limit our considerations to spaces that are spanned by the N-electron 
configurations constructed from the same one-electron spin orbitals that are used 
to define the N-electron coordinate space, i.e., I~) and the operator T. These 
spaces represent subspaces of the N-electron component of the Fock space ~N 
generated by I~)  and all single, double, etc., up to N-tuple excitations: 

r' / . . . . .  

a~ a~a2/ al a s / )  
with aj and rj ranging over the occupied and unoccupied spin orbitals, respec- 
tively. 

In standard CC approaches, Eqs. (13) or (15) are projected onto a subset of 
the spanning set in Eq. (17) consisting of I~) and of all the excited configurations 
that result from I~) by action of the excitation operators appearing in the 
approximate cluster operator T considered. However, as already alluded to above, 
we can also choose to project onto configurations from Eq. (17) that do not 
belong to a standard set. We shall refer to such projections as nonstandard 
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ones. Since our Hamiltonian H contains at most two-electron operators, it is 
easily seen that projections of Eq. (15) onto highly excited configurations will 
trivially vanish, which will make them useless from the MM viewpoint. More- 
over, nonstandard projections of Eq. (13) may produce linear combination of 
equations that are associated with projections on configurations of lower excita- 
tion order. (Note that unlike the equations that are associated with standard 
projections, the nonstandard projections of Eqs. (13) and (15) may lead to 
nonequivalent sets of equations.) Even though projections on some members of 
the spanning set (17) are trivially satisfied, the number of equations that result 
by nonstandard projections is usually much larger than the number of t-ampli- 
tudes to be determined. 

In view of these facts, the questions of the interpretation and of the possible 
usefulness of nonstandard equations in many-electron theory arise. Let us briefly 
address the latter one. Clearly, exploiting the additional (nonstandard) equations 
together with the standard ones will result in an inconsistent (or overcomplete, 
or overdetermined) system of equations. However, these equations can be 
satisfied in the least squares sense (by minimizing the sum of squares of their 
left-hand sides). Since these equations are not linear, this may not be an easy 
task. However, one could at least consider approximate modifications of the 
standard t-amplitudes when imposing the MM requirements or examine how 
accurately are these nonstandard equations satisfied by standard CC amplitudes. 

One could also use the nonstandard equations to replace some of the 
standard ones, keeping the number of equations to be equal to that of the 
unknown cluster amplitudes. This replacement, or selective projection, could be 
done in such a way so as to remove those standard equations which involve 
cluster components associated with intruder states and are responsible for the 
singular behavior of the corresponding linear approximation. However, it is not 
a priori clear how such replacements should be carried out, so that any such 
scheme will be more or less arbitrary. From this viewpoint, the least squares 
approach is certainly to be preferred (cf., however, Sect. 4). In order to simplify 
further discussion, we restrict ourselves in the following to the CPMET [23] (or 
CCD) equations, which may be regarded as representing a fundamental CC 
approach. 

3.2. Method of moments approach to CCD 

Let us first consider projections of Eq. (15) with T = T2 onto all the excited 
configurations belonging to the spanning set for O~N, Eq. (17). Since H involves 
at most two-electron operators, projections onto higher than sixtuply-excited 
configurations will identically vanish, leaving the following inconsistent system of 
implicit equations for the tz-amplitudes: 

((1) [HN[(1 + T2)4}>c = 0, (lSa) 

((2)]fN[T2~)c+ ((2)[VNI(I + T2 +½T~)~b)c=O, (lSb) 

((3) [fN[1T2~ ) c  d- ((3)]  VN[(T 2 q-l T2)~ ) c  = O, (18c) 
i 2 ((4)[VN[(~T2_.F I 3 T2)~)c = O, (18d) 

1 3 ((5)[VNlgT2¢)c = 0, (18e) 

((6)[VN[~T4~)c = O, (18f) 
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where <(n) ] is a shorthand notation for /(rl • • • G i an d l  the subscript N denotes 
\ al an I 

the normal form of operators [36]. As usual, f N  and VN designate, respectively, 
the one- and two-body parts of the Hamiltonian HN and [cf. Eq. (13')] the 
subscript C indicates that only connected terms are to be retained. We shall refer 
to this system as the M M - C C D  equations. If Hartree-Fock (HF) orbitals are 
used, i.e., if the Brillouin theorem (BT) holds, the projections onto mono- and 
tri-excited configurations simplify to 

<(1) I VNI Z2 >c = 0, (19a) 

<(3) I VNI(T= + 1T@)q~>c = 0. (19b) 

Notice that Eqs. (18b) represent standard CCD or CPMET equations. 
One could also consider Eqs. (18a) and (18b) as characterizing so-called BD 
(Brueckner-doubles) theory [37], (cf. also [38]), since Eq. (18a) can be satisfied 
by an appropriate orbital transformation, thus determining approximate Brueck- 
net (maximum overlap) orbitals. However, we work here with a f i x e d  chosen 
orbital set {qb i } (usually the HF orbitals), so that Eq. (18a), together with Eqs. 
(18c-f) will typify the MM approach rather than represent the conditions for 
Brueckner orbitals. 

Hugenholtz-like diagrams characterizing these equations when the HF or- 
bitals are used are shown in Fig. 1. To get a better feeling for the significance of 
nonstandard equations, and thus at least partially answer the question raised 
earlier, we present in Table 1 the lowest order of perturbation theory in which 
the diagrams characterizing the individual terms of the left-hand side of Eqs. 
(18a-f) (for the general reference state) and (19a,b) (if the BT holds) would 
contribute to the correlation energy. This gives us a certain measure of the 
importance of,various terms involved. We see from this table that this order 
increases with the excitation order of configurations onto which we project. The 
standard CPMET equations involve the terms of the second, third and the fourth 
order. Projections onto mono-excited configurations contain (for the general 
reference state) terms of the second and the third order, which indicates that 
their addition to the standard set of CPMET equations may have a strong effect 
on the t2-amplitudes. For HF orbitals, however, the projections onto the mono- 
and triply-excited configurations involve the fourth order term. Thus, a consider- 
ation of these equations could modify the t2-amplitudes to the same degree as the 
inclusion of non-linear terms in the CCD equations, which first contribute in the 
same order of PT. Equations corresponding to projections onto tetra-, penta- 
and hexa-excited configurations, Eqs. (18d-f), involve the terms of higher order 
than those appearing in standard equations and their effect on the t2-amplitudes 
is likely to be negligible. We will thus ignore these equations and concentrate on 
Eqs. (18a-c) or (19a,b) only. 

Consider, next, the projections of Eq. (13) with T = T2 onto the configura- 
tions spanning ff~,  Eq. (17). Realizing that 

(HN -- AEccD)]er2~> = e r~ (e - r2HNer2  --  AEccD)I~>, 

where A E c c o  = E c c D -  (q~ I HI ~> is the CCD energy relative to the mean value 
<~ I HI • > (e.g., the CCD correlation energy, when the HF orbitals are used), we 
can express the projection onto an arbitrary configuration <(n)[ as follows: 

<(n) I(HN -- AEccD)[er2~> = <er*2(n)le-r2HN er2 --  AEccDIq~> = 0, (20) 



Method of moments approach and coupled cluster theory 231 

OSdl 

(18e) 

(18f) 

Fig. 1. Hugenholtz 
diagrams appearing in the 
nonstandard CCD 
equations when the HF 
orbitals are used. The 
numbers in parentheses 
refer to the corresponding 
equations in the text. 
Large and small full 
vertices represent 
t2-amplitudes and 
antisymmetric two-electron 
integrals, respectively 
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Table 1. Lowest order of perturbation theory in which the diagrams (cf. Fig. 
1 for the HF case) characterizing various terms of the nonstandard projec- 
tions for the CCD approach can contribute to the correlation energy 

Bra-states defining 
the equations 
(excitation order) 

Term Lowest order of PT 

General 
reference 

HF 
reference 

<(1)1 1 2 - -  
T 2 3 4 

( (2 )  1 1 2 2 
T 2 3 3 
½T~ 4 4 

<(3) I T2 4 4 
l r~ 5 5 

<(4) I ½T9 = 5 5 

~T 3 6 6 
<(5)[ ~T 3 7 7 
<(6) I 1 4  ~T  2 8 8 

so that  the projections o f  Eq. (13) can be expressed in terms of  projections o f  Eq. 
(15) considered above. Exploiting this fact, we can write the projections o f  Eq. 
(13) in the following form: 

((1)  IHN I e T=,~ >c -- o, (21a) 

( (2)  [ H u l e r ~  ) c = O, (21b) 

rs a b  ( (3 )  ]nuler2~)c + ¼ Z tab (ers ( 3 ) I H N  ler2~)c ----- 0, (21c) 
a,b 
r,s 

rs ab  ((4)  [HN[erz~ ) c + ¼ ~, tab ( er, (4 ) IHNle"24 , )c  = 0, (21d) 
a ,b  
r,s 

rs ab  T 2 ((5)IHNIer:q))c + ¼ Z tab (ers(5) lH^rl e ~ ) c  
a ,b  
r,s 

1 -~- ~ E ~ ~rs  ~ tu  / o a b c d f ~  z .  "a~'~a',~r~,. ,~ ,  [HN[eT2~)C = 0, (21e) 
a,b c , d  
r,s t ,u  

rs ab  ( (6 )  InN[er~¢)c + ¼ Z t.b (e~s (6)IHN[eT2*)C 
a ,b  
r,s  

1 ~ ~rs  f t u  / o a b c d [ ~  
/ ~  . a b ~ c d N ~ r s t u  k,,~,l InN [eT2~)C = O, (21f) + 

a,b c , d  
r,s t ,u  

ab S p a n { ( ( n  - 2) 1} and where P al'''an = (a ~ 1 ~ .  "~* Since (er~ (n)] 
- - r  1 • • • r n ~ a  1 " " " an1  " 

a b c d  (e~t, (n) le Span{((n - 4 ) [ } ,  the sums in Eqs. ( 2 1 c - f )  represent linear combina-  
tions o f  left-hand sides o f  projections on lower-excited configurations, e.g., the 
sums in Eqs. (21c) and (21d) contain the left-hand sides o f  Eqs. (21a) and (21b), 
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respectively. In diagrammatic form these sums are represented by linked but 
disconnected diagrams. Let us notice that for n > 6, ((n)]Hu[er2~)c = 0. There- 
fore, the equations representing projections onto higher-than-hexa-excited 
configurations can be expressed in terms of Eqs. (21a-f). Thus Eqs. (21a-f) 
represent all the linearly independent equations that arise when projecting Eq. 
(13) onto configurations spanning YN, Eq. (17). Note that when we deal with 
subsets of equations whose cardinality exceeds the number of unknown ampli- 
tudes, i.e. with overdetermined systems, the result also depends on the equation 
type, Eq. (13) or (15), that we choose in the projection procedure. 

The terms on the left-hand side of Eqs. (21a-f) can be similarly characterized 
by the PT order as was done in Table 1 for Eqs. (18a-f). A glance at Eqs. (21c-f) 
reveals that the disconnected terms are of lower order in PT than the connected 
ones. Consequently, the projections on configurations of a given excitation order 
involve terms of a lower PT order than was the case for Eq. (15). 

Consider, finally, the projections of Eqs. (13) and (15) with T = T2 onto the 
mono-excited configurations, as given by the identical Eqs. (18a) and (21a). 
When employing HF spin orbitals, these can be cast into a form given by Eq. 
(19a). Notice that this equation differs from the standard CCD Eq. (18b) in 
several important points. First, it is linear in T2. Second, it contains neither the 
absolute term nor the diagonal terms involving the energy denominators. Thus, 
Eq. (19a) cannot be used as a recursion equation to generate MBPT expansion 
for the t-amplitudes, as is the case for standard CCD equations (cf., e.g., [35]). 

4. Example: L-CCD equations 

As already alluded to above, the most meaningful exploitation of nonstandard 
CC equations, such as MM-CCD Eqs. (18), can be achieved by satisfying them 
in the least squares sense. Since this is computationally rather demanding for 
non-linear systems, we have decided to illustrate the above considerations on the 
linear version of the CCD (L-CCD) equations. For this purpose we have chosen 
two well studied, yet simple, systems, which involve a highly quasi-degenerate 
ground state reference, so that the L-CCD procedure suffers a singular behavior 
and thus completely breaks down once the quasi-degeneracy effects become 
significant and the intruder doubly excited states have lower energy than the 
restricted HF (RHF) reference. The first example involves the so-called H4 
model [19, 39], consisting of two interacting, slightly stretched, H2 molecules in 
a trapezoidal geometry, and the second one the cyclic polyene model, CNHN, 
with N = 2n = 4v + 2, v = 1, 2 . . . . .  [40, 41]. 

4.1. H4 model [19, 39] 

This model was examined in a considerable detail in our studies of the impact of 
quasi-degeneracy on various CCD approximations [19], and was subsequently 
the subject of several papers [39] exploring this problem for perturbative 
approaches. Since the size of the basis set used does not have any effect on the 
singular behavior [39f], we employ the simplest minimum basis set model as in 
Ref. [19]. 

The trapezoidal arrangement of the four hydrogen atoms, constituting the 
H4 model [ 19], is fully specified by a single parameter ~ once the internuclear 
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separation between nearest neighboring atoms is fixed (at 2 a.u., see also Fig. 2 
of [19]). For ~ approaching zero, the exact wavefunction involves strong quasi- 
degeneracy of the reference configuration [4),  while for ~ = 0.5 (corresponding 
to the linear arrangement) these effects are removed and all the CCD approaches 
provide an excellent approximation. Another remarkable feature of this simple 
model is the fact that the linear approximation (L-CCD) breaks down com- 
pletely in the strongly degenerate region, which is reflected by the presence of a 
singularity in the correlation energy as a function of ~. 

The four SCF MO's of this simple model are labeled according to their 
increasing orbital energies. The FCI wavefunction involves only two mono- 

(31/ ~ / )  ( 3 3 /  44/  33/  H /  34/  3 4 / )  
excited , ,sixbiexcited 22 ' 22 ' 11 ' ' 12 s' 12 t ' t w °  

triexcited (particle-hole conjugates of monoexcited), and one tetraexcited 
( 3344~  

11122/, ] orbital configurations [19]. Hence, after eliminating spin variables, 

Eqs. (18b) or (21b) are reduced to a system of six equations, defined by the 
above-mentioned biexcited orbital configurations onto which the Schr6dinger 
equation is projected. 

In the MM approach to the L-CCD scheme (MM-LCCD approach), we 
also have to consider two equations obtained by the projection onto the singly 
excited configurations and two more equations obtained by projection onto the 
triply excited configurations. Here we shall only examine the impact of the 
equations projected onto the monoexcited states, Eq. (19a). A version of the 
MM-LCCD approach, which involves equations projected onto the triply 
excited configurations, will be studied in the next example. 

We require that the t2-amplitudes are such that the set consisting of six 
standard L-CCD equations and two equations projected onto singly excited 
states is satisfied as best as possible in 
the expression 

~a ( rlr2 H N I ( I + T 2 ) ~  / R =p alaz 
a 2 
r l r 2  

the least squares sense, i.e., we minimize 

2 q - q 2  (~  HN](1 T2)~) 2 ,,r + , (22) 

where p and q are weighting factors, p + q = 1. These weighting factors are 
included in order to take into account the above-mentioned fact that the two 
sums involve terms of different order in the PT sense and that the number of 
equations in various subsets corresponding to different excitation order projec- 
tions may greatly differ. The condition that minimizes R, Eq. (22), results in a set 
of linear equations for the t2-amplitudes (see Sect. 4.2 for more detail). 

The results of our calculations of the correlation energy are presented in 
Table 2, where they are compared with standard L-CCD and CCD results as 
well as with the exact FCI values. The L-CCD energy has a singularity for 
ct ~ 0.018. We can see from Table 2 that for all the values of the parameter p 
considered, the correlation energy shows no singularity whatsoever, which 
indicates that taking into account the additional nonstandard equations de- 
creases the impact of the singularity of the coefficient matrix of the L-CCD 
approach (cf. [21]). It is also apparent from the table that irrespective of the 
p-value, the results of the present method are in better agreement with the FCI 
energies than the standard ones. This agreement improves spectacularly when 
proceeding to very small p-values, i.e., when the ratio q/p in Eq. (22) becomes 
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very large. This behavior seems to be a consequence of the fact that the terms in 
the second sum, representing the fourth-order quantities, are much smaller than 
the terms in the first sum that contain second-order contributions. A comparison 
of the results forp = 10 -6 andp = 10 -8 indicates that a further reduction ofp will 
not result in any significant change of the correlation energy. Thus, an inclusion 
of nonstandard equations obtained by projections onto the monoexcited configu- 
rations has a similar effect on the removal of a singular behavior of the L-CCD 
method as has the inclusion of the non-linear terms (for a review of results 
obtained at various stages of inclusion of such terms, see [19]). 

As mentioned earlier, another possibility of employing the additional CC 
equations that are generated by nonstandard projections is to use them in lieu of 
standard ones, while preserving the total number of equations (given by the 
number of unknown t-amplitudes). In Table 2 we present the results for three such 
selections. In the first two, the equation obtained by projecting onto the orbital 

34/  is replaced, in turn, by the projections onto 31 / and onto ~ / •  configuration 12 t 

The set of equations in the third selection is obtained by replacing the projections 

4 4 / a n d  34/  by the projections onto 31/and ~ /  We see from the table onto 22 12 t 
that the energies so obtained are much better than those obtained with the 
traditional L-CCD approach. The improvement is particularly evident in the 
region of strong quasi-degeneracy. This is easily understood if we realize that we 
have replaced the equations that are primarily responsible for the singularity of 
the L-CCD coefficient matrix by equations obtained through nonstandard 
projections. 

4.2. Cyclic polyene model [40, 41] 

Let us next investigate the cyclic polyene model [40, 41] CNHN, N = 2n = 4v + 2, 
v = 1, 2 . . . . .  with non-degenerate ground state, as described by the Pariser- 
Parr-Pople (PPP) semiempirical model Hamiltonian [42]. This system represents 
a very useful model of quasi-one-dimensional metallic-like polymers and has been 
extensively studied in connection with dimerization of polyacetylene [43], which 
is crucial for understanding of the electrical conductivity as well as of various 
magnetic and optical properties in these potentially very useful materials [44]. 
Simultaneously, this model represents an extremely challenging problem, since its 
RHF reference state becomes highly quasi-degenerate when N ~ ~ (in practice 
N ,-~ 20), so that even standard CCD approach breaks down [41d,e]. We note that 
for highly symmetric, undistorted models with the nuclear framework forming a 
regular N-gon, the MO's are completely determined by the symmetry (represent- 
ing simultaneously HF and Brueckner orbitals). Thus, the monoexcited cluster 
component 7"1 exactly vanishes in this case and, likewise, Eqs. (18a) or (19a) are 
automatically satisfied, so that we can ignore monoexcitations altogether. Since 
the complete set of the MM-LCCD equations for cyclic polyenes consists now 
of only the equations projected onto doubly and triply excited states, we minimize 
the following expression [see Eqs. (18b) and (18c); cf. with Eq. (22)]: 

R=pZ]<(2)IVN+HuT2]~>I2+qZI<(3)IVNT2Ia~>I 2, (23) 
(2) (3) 



236 K. Jankowski et al. 

8 
" O  
e~ 

~9 
I 

2 

O 

, . o  

~ c  

I 

o 

• ~ -  ¢,q 
• ~ -  ¢-q 

/z . . .  
ce~ 

o 

u :z  

8 

O 

C 
O 

O 

O 

" O  



Method of moments approach and coupled cluster theory 237 

where again p + q = 1. We dropped the subscript C in Eq. (23), since there is no 
contribution from the disconnected terms in the matrix elements entering R [cf. 
Eq. (22)]. Rewriting this expression with the help of projection operators Qcj), 

Q<J) = ~ I (J ) ) ( (J ) l ,  j = 2, 3, (24) 
(J) 

we have: 

J 

+ q 2 t* (+/I VuQ<3)VNT21+), (25) 
J 

where, for simplicity, we write the pair cluster component as follows: 

T2 = ~ tiC2(i), T~ = ~. t* C2(i) t, (26) 
i i 

the sum extending over all biexcited configurations ~i = C2(i)~b. Thus, the 
necessary condition for the minimum of R, ~R/Ot* = OR/Ot~ = 0, results in a 
linear system of equations for the t2-amplitudes, namely: 

k,j 

+ q Z (~il  VNQ<3)Vu]~j)tj = 0, (27) 
J 

and its complex conjugate. 
Introducing the standard notation for the elements of a, b and W matrices: 

ai = < + + I H , + I + >  = <++l VNI+>, 
b o. = (+, IHN I+j ), (28) 

we can write the system (27) as follows: 

pb(a + bt) + qW<3)t = 0, (29) 

where t is the column matrix of pair cluster amplitudes, t = (fi t 2 . . . ) r .  Finally, 
we can write the relevant M M - L C C D  equations in the form: 

(b2 + l - P  w<3))t + ba (30) 

so that for p -- 1 we recover standard L - C C D  equations. The correlation energy 
is given by the standard expression: 

AE = a*t. (31) 

We also note that the term involving triple excitations, I~ ~3), has a similar 
structure (except for the denominators) as the W <3~ term occurring in the recently 
considered CCDT-1 and ACPTQ approaches [41f, 45] as well as in the optimized 
inner projection approach [45-47]. Thus, we were able to use very much the 
same code as in these studies [41f, 47]. 

We have examined the M M - L C C D  solutions for cyclic polyenes with 
v = 1-5 in both PPP and Hubbard Hamiltonian descriptions, using the same 
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parametrization as in our earlier studies [41]. The whole range of the coupling 
constant, as well as of the parameter p = 1 - q, was investigated in each case. We 
recall [41d-f] that the standard L - C C D  approach suffers a highly singular 
behavior in the intermediately and strongly correlated regions, the number of 
singularities rapidly increasing with increasing N and extending to higher and 
higher ]fl] values (fl designates the resonance or hopping integral, whose recipro- 
cal value can be regarded as a coupling constant; the physical value of fl is about 
-2 .5  eV, fl = 0 represents the strongly correlated limit, while fl ~ - 5  eV corre- 
sponds already to a weakly correlated regime; see [41d-f] for details). 

Here we should emphasize that even the full CCD approach encounters 
serious difficulties when applied to cyclic polyene models. In the strongly 
correlated region of N = 6 and 10 polyenes, the resulting correlation energies are 
very poor, while for N/> 14 there exists a critical resonance integral value tic, 
beyond which the solutions of the CCD equations become complex [41d,e]. The 
critical value tic shifts towards the weakly coupled region with increasfng polyene 
size, so that already for the N = 26 PPP model, the solutions of the standard 
CCD equations are not available even for the physical parametrization. Our 
studies [41d,f] indicate that the critical resonance integral value tic is a branch 
point in the correlation energy regarded as a function of fl, and that the poor 
performance of the CCD approach is a result of the neglect of connected 
quadruply excited clusters [41b,d,e,g]. 

A typical behavior of the M M - L C C D  energies in the strongly correlated 
regime is illustrated in Fig. 2 for the C~oHlo ring, in which case the exact result 
is available for both PPP [41b] and Hubbard [48] Hamiltonian descriptions. This 
figure clearly indicates that already for N - - 1 0  the CCD approach essentially 
breaks down in the highly correlated region, even though the solution still exists. 
The M M - L C C D  energies, already for very small q = 1 - p  values, show only 
the remnants of the singular behavior and get gradually "smoothed out" with 
decreasing p. It is remarkable that even for very small p values (10 -3-10 -I°) the 
M M - L C C D  energies show a more or less correct fl dependence, although 
shifted towards smaller absolute energy values, as may be seen from Fig. 3 
showing the fl dependence of the correlation energy for the N = 22 ring in 
weakly and intermediately coupled regions. Indeed, M M - L C C D  can provide 
good correlation energies for ]ill ~> 1.5 eV (N = 6-14) and [fl] >~2 eV (U = 18 
and 22). For the Hubbard models, the M M - L C C D  energies are quite satisfac- 
tory up to fl = - 1  eV. The nonsingular behavior of the M M - L C C D  energies in 
the whole range of the coupling constant, particularly for the Hubbard Hamilto- 
nian models, and the fact that it recovers a nonnegligible part of the correlation 
energy well beyond the first singularity of the standard L - C C D  approach, are 
truly remarkable in view of the simplicity of the procedure and the fact that no 
account of important quadruple excitations is taken. 

Examining the results for 6 ~< N ~< 22 and different p values, we have noticed 
that with increasing N the optimal p values tend to 1. As already indicated 
above, this is most likely related to the fact that the number of triples nr grows 
much faster than the corresponding number of pair clusters no. The optimal p 
value seems to correlate quite well with the ratio nr/(no + nr) and changes from 
about 0.3-0.4 for N = 6 to about 0.9 for N = 22. These observations are only of 
a very preliminary character and an investigation of a possibility to estimate 
independently the p value would be most desirable. 

It is an interesting observation that for sufficiently small values of p, the 
M M - L C C D  correlation energies represent upper bounds to their exact values 
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Fig. 2. MM-LCCD 
correlation energies per 
electron, AE/N, (in eV) 
for the N = 10 PPP (a) 
and Hubbard (b) cyclic 
polyene models in the 
strongly correlated 
region for various 
values of the weighting 
factor p (solid lines). 
Resonance integral 
dependence of the 
exact (full CI) [41b] 
(short-dashed line), 
L-CCD (long-dashed 
line) and full CCD 
(chain-dashed line) 
correlation energies per 
electron is presented 
for a comparison 

(eft Figs. 2 and 3). F o r  N ~> 10, this is true in the entire region o f  the coupling 
constant .  This proper ty  o f  the M M - L C C D  approach  should be compared  with 
the well-known proper ty  o f  the s tandard  L - C C D  approach  (or  M M - L C C D  
approach  with p = 1), which usually provides a lower bound  (see, e.g., [2]; cf. 
Fig. 3). 

5. Structure and definiteness of the CC wavefunction 

We have seen that,  within the f ramework  o f  the M M  approach,  we can generate 
various sets o f  CC-type equat ions for  cluster amplitudes, depending on the way  
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Fig. 3. M M - L C C D  correlation 
energies per electron, AE/N, (in 
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Hubbard (b) cyclic polyenes in 
the region of  nonsingular 
behavior of  the standard L - C C D  
and full CCD approaches for 
various values of  the weighting 
factor p (solid lines). Exact data 
for the N = 22 PPP model are 
not available. Thus, the 
short-dashed line in (a) represents 
the correlation energy per 
electron as obtained with the 
ACPQ + T(ACPQ) method [41h], 
which provides us with the best 
available estimates for the 
ground-state correlation energies 
of  cyclic polyenes with large N's. 
Short-dashed line in (b) 
represents the exact correlation 
energy per electron as obtained 
[48] by solving the Lieb and Wu 
equations [49]_. Resonance 
integral dependence of  the 
L - C C D  (long-dashed line) and 
full CCD (chain-dashed line) 
correlation energies per electron 
is presented for a comparison. 
The large curvature of  the curve 
representing the full CCD results 
for the PPP model in the region 
of  spectroscopic fl value 
( - 2 . 5  eV) reflects the presence of 
the first-order algebraic branch 
point at tic = -2 .34  eV [41d,f] 
(cf. the text for details) 

of projecting the Schr6dinger equation. Hence, we obtain different wavefunctions 
of the form I e ) ,  approximating the same exact wavefunction ] ~ ) .  Clearly, in 
order to determine uniquely the cluster amplitudes and thus the cluster operator 
T within the general context of the MM approach, we have to specify not only 
the coordinate space used, but also our choice of the projection space. 

In this context it is useful to realize that in fact we seldom fully exploit the 
highly excited states that are automatically involved in the CC wavefunction. Let 
us illustrate this point on the CCD approach where 

15OCCD ) = e T21~ ), (32a) 

or, when N = 2n, 

I~c~o)=eT~[~)= 1+T2+2!  2 + " ' + ~ . T ~ .  I~). (32b) 
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Now, when using the standard approach, the cluster components of T2 are 
determined by equivalent systems of Eqs. (14b) and (16b). Clearly, only the first 
three terms in the expansion on the rightmost side of Eq. (32b) give nonzero 
contributions to the standard Eqs. (14b) or (16b). Thus, strictly speaking, the 
following wavefunction: 

I ~CCD)' = (1+7"2 +sTz +12  c~3T23 -{- ""q-O~mT'ff) c19),[ (33) 

with arbitrary (z i ( i  : 3 . . . . .  m), will lead to the same CCD equations as the true 
CCD wavefunction, Eq. (32a). One might thus think that in fact the CCD 
wavefunction is not unique, since we can obtain the same CCD energy, given by 
Eqs. (14a) or (16a), and the same t2-amplitudes given by Eqs. (14b) or (16b), for 
an arbitrary choice of ct i, i = 3 , . . . ,  m, in Eq. (33). However, we know from 
Hubbard's work that the exact wavefunction, which will possess the correct 
size-extensive property, must have the form given by Eq. (6). Thus, truncating T 
to T2, the correctly behaving wavefunction to this approximation must have the 
form (32a). Now, in order to determine this wavefunction, we only have to 
specify the 7"2 cluster amplitudes, whose number equals the number of linearly 
independent biexcited configurations M 2. Consequently, these can be determined 
by projecting onto the space of the same dimension. The most natural choice for 
this projection space is clearly the standard one. However, nonstandard equa- 
tions might prove useful, particularly when the standard choice is plagued with 
singularities, as may be the case in quasi-degenerate situations. This was demon- 
strated in the preceding section on the L-CCD case for the H4 and CNHN 
models. 

It is also only in this sense that the CCD, or any other CC, approach 
accounts for the disconnected hexa-, octa-, etc. excited cluster components. 
Indeed, these terms only occur explicitly in the general MM approach to CCD, 
as discussed above, when the full set of MM equations, Eqs. (18a-f) or (21a-f), 
involves projections onto mono-, bi-, . . . .  hexa-excited configurations and con- 
tains terms up to the fourth power in T2. However, as stated already, any subset 
of M2 independent equations will determine a set of M 2 tz-amplitudes. Clearly, 
the standard set represents the most meaningful choice from the viewpoint 
of either the MBPT or CI, as discussed above. However, when this set is ill- 
conditioned or even singular, other choices might be preferred. A more detailed 
investigation of these options would be clearly desirable. 

6. Conclusions 

We attempted to provide a novel insight into the CC theory by interpreting its 
basic equations from the viewpoint of the method of moments. Within this 
approach, in addition to the usual set of equations for cluster amplitudes that 
result from the so-called standard projections (projections onto excited configu- 
rations that occur in the cluster operator considered) we also obtain equations 
resulting from projections onto the nonstandard configurations. To understand 
the significance of the latter, we have derived the full set of MM equations for 
the CCD case. Within this set, the standard equations are characterized by the 
fact that they involve terms contributing to the correlation energy in the lowest 
order of PT. However, among the equations associated with nonstandard 
projections there are such that contain terms of the same order of PT as certain 
terms of standard equations. Consideration of these nonstandard equations may 
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be  o f  in te res t  in p rac t i ca l  app l i ca t ions ,  as we d e m o n s t r a t e d  f o r  the  L - C C D  
a p p r o a c h  app l i ed  to two  s imple  m o d e l s  i n v o l v i n g  quas i -degene racy .  
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